Low Power Crystal Oscillator 32.768 kHz

Description

The EM7604 is an advanced low power CMOS circuit intended to be used together with a 32.768 kHz tuning fork crystal as a low frequency clock oscillator.

Except the crystal, no other external components are required.

In order to achieve a high frequency accuracy, the matched crystals should have a \pm 20ppm tolerance or tighter.

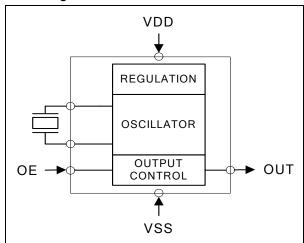
Very low power consumption, as low as 250nA, is guaranteed over a very wide supply voltage and temperature ranges.

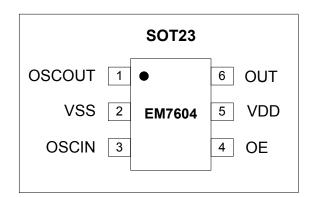
Offered in a small SOT23-6 package, the EM7604 is a completely lead free product.

Applications

- General purpose clock generator for digital systems
- Clock drivers for Real Time Clocks
- Timekeeping in network servers and computers
- Electricity, gas and water metering
- Portable field communication
- Mobile phone
- Solution for problems with embedded quartz oscillators

Pin Assignment


Pin	Connection	Assignment
1	OSCOUT	Oscillator Output
2	VSS	Negative Supply Voltage
3	OSCIN	Oscillator Input
4	OE	Output Enable
5	VDD	Positive Supply Voltage
6	OUT	Frequency Output


Features

- Very low power consumption: typ. 250nA
- On chip integrated oscillation capacitor: C_L=8pF
- Matched low cost SMD quartz available from Micro Crystal
- Compatibility with crystals having high series resistance
- Very tight frequency tolerance
- Excellent oscillator stability: 0.2ppm/V
- Wide supply voltage range: 1.2V to 5.5V
- Operating temperature range: -40°C to +125°C
- Small SOT23-6 package
- 100% lead free, RoHS compliant

Block Diagram

1

Absolute Maximum Ratings

Parameter	Symbol	Conditions
Voltage at V _{DD} to V _{SS}	V_{DD}	-0.3V to +6V
Minimun voltage	V_{MIN}	$V_{SS} - 0.3V$
Maximun voltage	V_{MAX}	$V_{DD} + 0.3V$
Storage Temperature Range	T _{STG}	-55°C to +150°C
Maximum soldering	T_{Smax}	260°C x 20s

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

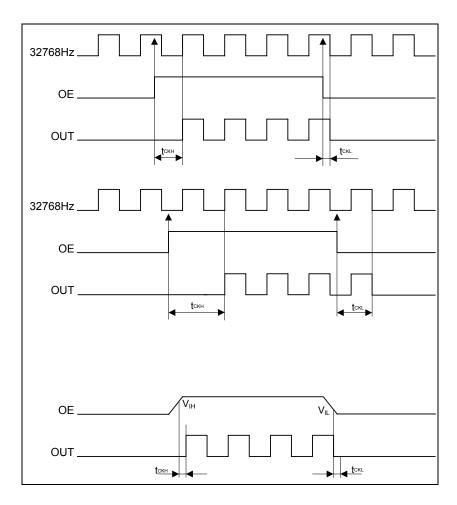
Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. Unused inputs must always be tied to a defined logic voltage level.

Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	1.2	5.5	V
Operating Temperature	T _A	-40	+125	°C

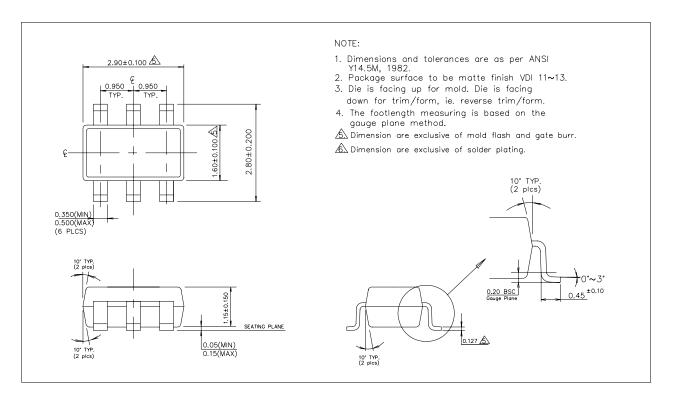
Electrical Characteristics


Unless otherwise specified: V_{DD} = 3.0V, V_{SS} = 0V, T_A =25°C and R_S = 60k Ω

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage range	V_{DD}		1.2	3.0	5.5	V
Current consumption	I _{DD1}	V_{DD} = 5.0V, OE at V_{SS}		300	550	nA
(Note1)		V_{DD} = 3.0V, OE at V_{SS}		250	500	nA
		V _{DD} = 2.0V, OE at V _{SS}		250	500	nA
		V _{DD} = 5.0V, OE at V _{SS}		750	1000	nA
		Top=-40 to +85°C				
		V_{DD} = 3.0V, OE at V_{SS}		650	900	nA
		Top=-40 to +85°C				
		V_{DD} = 2.0V, OE at V_{SS}		650	900	nA
		Top=-40 to +85°C				
Oscillator						
Input Capacitance	C_{IN}			16		pF
Output Capacitance	C_OUT			16		pF
Start Up Voltage	V _{STARTUP}	t _{START} < 3s	1.2			
Start Up Time	t _{STARTUP}			0.4	8.0	S
Frequency Stability against	Δf/f *ΔV	$1.5 \le V_{DD} \le 5.5V$		0.2	2	ppm/V
Supply Voltage Variations						
Input						
Input Voltage	V_{IL}		V_{SS}		$0.2 \times V_{DD}$	V
	V_{IH}		$0.8 \times V_{DD}$		V_{DD}	V
Output						
Duty Cycle			40	50	60	%
Output Voltage	V_{OH}	$I_{OH} = -1.0 \text{ mA}, V_{DD} = 5.0 \text{V}$	V _{DD} -0.4	V_{DD} -0.1		V
	V_{OL}	$I_{OL} = 1.0 \text{ mA}, V_{DD} = 5.0 \text{V}$		0.14	0.4	V
Output Rise and Fall Time	t _{RF}	C _L = 15pF				
		10% - 90%		70	100	ns

Note1: The current consumption when the output clock is enabled (OE pin at V_{DD}) is a function of the load capacitance on the OUT pin, the output frequency f_{OUT} = 32768Hz and the supply voltage V_{DD} . The additional consumption for a given load can be calculated from: $\Delta I_{DD} = C_{LOAD} \times V_{DD} \times f_{OD} \times I_{DD} \times$

Timing Waveforms



Frequency Temperature Characteristics with Standard 32.768 kHz Crystal

Package Information:

Ordering Information

Part Number	Package Type	Top Marking	Delivery Form
EM7604V1SP6B+	SOT23	OVXY	Tape & Reel

Contact EM Microelectronic for availability in chip form or in other packages.

XY characters of the Top Marking are used for the lot traceability.

EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not authorized for use as components in life support devices or systems.